STATISTICAL CALIBRATION and DESTRIPING MCST (MARCH 2005)

THE ASSUMPTION

ALL DETECTORS SAMPLE THE SAME DISTRIBUTION OF ILLUMINATION CONDITIONS AND SURFACE REFLECTANCESE

OR
SURFACE TEMPERATURES AND EMISSIVITIES

PERFECTLY CALIBRATED DETECTOR RADIANCES MUST HAVE SAME STATISTICS (MEANS, VARIANCES, ETC.)

THE DEVIATIONS IN THE STATISTICS OF A DETECTOR FROM "TRUTH" IS A MEASURE OF CALIBRATION ERROR

Brij Gambhir (Brij@SSAIHQ.com)

STATISTICAL CALIBRATION and

DESTRIPING

MCST (MARCH 2005)

THE RELATIONSHIPS

$$S_k = F_k(X); X = G(O,C)$$

Error dC in calibration C leads to deviation dS in S

$$dS = H dC$$

$$H_k = (dS_k/dC_i), (k=1,ns; i=1,nc)$$

```
For ns .GE. nc, the optimal solution is diagonal elements
! \mathbf{dC} = (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} (\mathbf{H}^T \mathbf{W} \mathbf{dS})
! Variance(\mathbf{dC}) = (\mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} diagonal elements
! Wkk' = 1/Variance(Sk) for k=k'
= 0 for k not equal to k'
```

Brij Gambhir (<u>Brij@SSAIHQ.com</u>)

STATISTICAL CALIBRATION and DESTRIPING MCST (MARCH 2005)

PRACTICAL CONSIDERATIONS

Implicit Assumption: Stable calibration

Domain of Validity of Fitted calibration (local)

Selection of Calibration Equation (# of Parameters)

Statistical "Degrees of Freedom" imbedded in the scene
The Quality of Fit
Favor minimum parameter solution

Full Dynamic Range Calibration (Scene Selection)
"Degrees of Freedom"
Dynamic Range Considerations
Composite Scenes

Brij Gambhir (Brij@SSAIHQ.com)

STATISTICAL CALIBRATION and DESTRIPING

MCST (MARCH 2005)

DESCRIPTION OF TESTING PROCEDURE

Starting Point

Input Scene

Scaling to raw data quantization

Input calibration parameters

Selection of "truth" detector"

Selection of number of statistics to use

Both linear and non-linear fitting

Comparison of Before-Aft statistics of a representative detector

Application of new calibration (linear case only)

Rescaling

Before and after scene comparisons

Brij Gambhir (<u>Brij@SSAIHQ.com</u>)

STATISTICAL CALIBRATION and DESTRIPING MCST (MARCH 2005)

Next Steps

Publish the basic algorithm

Develop Criteria for "truth" selection

Test cal stability assumption using varying length segments

Develop/Select "scenes" for full dynamic range calibration

Develop criteria to identify the need for nonlinear fit

Apply to the actual raw data and initial cal as input

Brij Gambhir (Brij@SSAIHQ.com)